[1]:

[9]:

[9]:

[2]:

[3]:

[4] :
[4]:

[5]:

[6]:

interval-scheduling

January 28, 2026

import random
random.sample([1,2,3,4,5], 2)
(2, 1]

for this test, we'll model start times and end times as integers between 0
wand 100
def random_request():
return sorted(random.sample(range(100),2))

def make_requests(n):
output: n random requests

longer way to do this

requests = []

for 1 in range(n):

requests. append (random_request ())
return requests

faster
return [random_request() for i in range(n)]

make_requests(5)
((52, 531, [16, 531, [7, 471, [57, 78], [35, 51]]

def plot_requests(requests):
input: a list of requests
output: none
print an ascit plot of the requests
for r in sorted(requests, key=lambda x: x[1]):
print (" "*(r[0]) + "-"x(r[1]-r[0]))

R = make_requests(5)
print (R)
plot_requests(R)

([27, 671, [18, 901, [24, 35], [60, 73], [1, 69]]

[8]:|sr = sorted(R, key=lambda x : x[1])
print(sr)

((24, 35], [27, 67], [1, 69], [60, 73], [18, 90]]

[11]: def greedy_solution(requests):
tnput: a list of requests
output: a list of mon-overlapping requests representing our solution

sort by earliest end time
sorted_requests = sorted(requests, key=lambda x : x[1])

solution = []

two lines

req = sorted_requests.pop (0)

solution.append(req)
solution.append(sorted_requests.pop(0))

while len(sorted_requests) > O:
request = sorted_requests.pop(0)
request = [start_time, end_timel]
if request[0] >= solution[-1][1]:
request does not overlap the last meeting in solution
solution.append(request)

return solution

[22] : requests = make_requests(50)
greedy_sol = greedy_solution(requests)

[23]: print(requests)
print ("\n")
print (greedy_sol)

(1, 311, [23, 78], [0, 20], [65, 85], [60, 91], [40, 98], [33, 72], [29, 79],
(15, 801, [6, 131, [9, 651, [21, 551, [57, 631, [16, 611, [8, 28], [1, 66], [51,
791, [84, 96], [54, 871, [17, 451, [83, 941, [5, 541, [73, 98], [92, 98], [62,
951, [35, 921, [36, 981, [25, 47], [81, 961, [3, 471, [29, 34], [35, 88], [32,
73], [27, 52], [8, 661, [54, s8e]l, [12, 31], [84, 88], [0, 28], [28, 48], [2,
671, [14, 78], [74, 82], [32, 69], [50, 85], [26, 831, [24, 56], [21, 311, [14,
46], [27, 81]]

(e, 13], [21, 31], [57, 63], [74, 82], [84, 88], [92, 98]]
[24]: plot_requests(requests)

[25] :

[26]:

[26] :

[]1:

len(greedy_sol)

6

